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A ‘one-step’ theory based on Pitsch distortion is proposed to explain the

continuity between the orientations of the Kurdjumov–Sachs (KS), Nishiyama–

Wassermann (NW) and Pitsch variants observed on the electron backscatter

diffraction pole figures of martensitic alloys. The Pitsch distortion respects the

hard-sphere packing of the iron atoms and implies the existence of a neutral line

along the close-packed direction [110]� = [111]�. Its principal strains are 0, �5.7

and 15.5%, well below the +12, +12 and �20% values of the Bain distortion. At

the nucleation step, the distortion generates martensite that continuously

deforms the austenitic matrix. Martensite continues to grow in Pitsch

orientation inside the deformation field of the surrounding austenite to reach

KS and NW orientations in reference to the bulk austenite. Some experimental

results reported in the literature are revisited, such as the {225}� habit planes, the

sometimes observed ‘twins’ at the midrib, the formation of butterfly martensite,

and the effect of prior plastic deformation of austenite on the transformation

temperature and on variant selection mechanisms.

1. Introduction

Martensite, generally noted �0, or here simply �, is a body-

centred cubic (b.c.c.) or body-centred tetragonal (b.c.t.)

metastable hard phase obtained in steels and other iron alloys

by rapid cooling of the high-temperature face-centred cubic

(f.c.c.) phase, the austenite �. Many orientation relationships

(ORs) between the � martensitic variants and the � parent

grains are reported in the literature (Table 1). KS ORs

(Kurdjumow & Sachs, 1930) and NW ORs (Nishiyama, 1934;

Wassermann, 1933) were measured by X-ray diffraction; GT

ORs (Greninger & Troiano, 1949) and Pitsch ORs (Pitsch,

1959) were identified by transmission electron microscopy

(TEM) diffraction. More recently, a precise average OR was

also determined by Miyamoto et al. (2009) by electron back-

scatter diffraction (EBSD). The Bain OR was considered by

Bain (1924) as the result of a distortion composed of a

compression of 20% along the [001]� axis and an expansion of

12% along the [110]� and ½110�� axes. However, the Bain OR is

more than 10� away from the experimentally determined KS,

NW or GT ORs. The KS is the most often reported OR. The

Pitsch and NW are two complementary ORs (the indices � and

� are interchanged). The NW and Pitsch ORs are both 5� away

from the KS OR (Dahmen, 1982).

The main crystallographic models of martensitic transfor-

mation are (a) the Bain distortion, (b) the Kurdjumov–Sachs–

Nishiyama (KSN) shear/dilatation model, and (c) the Bogers

& Burgers (BB) model, later refined by Olson & Cohen (OC)

(a brief description and references are given in Supplementary

Material 11). None of these models seems to be totally satis-

factory. The high-resolution transmission electron microscopy

(HRTEM) investigations of Kajiwara et al. (1996) and Ogawa

& Kajiwara (2007) on the structure of the austenite/martensite

interfaces invalidate the BB model, and seem to agree with the

KSN model. Interestingly, Sandoval et al. (2009) recently

showed by atomistic simulations that the KSN path is ener-

getically more favourable than the Bain path. However, the

KSN model is far from the consensus due to its large atomic

displacements and strains. Sinclair & Hoagland (2008) showed

by molecular-dynamics simulations that the OC model can

provide sufficient conditions for the nucleation of � marten-

site, and found that the � nuclei are actually in the Pitsch OR

with the surrounding austenite. Since the most representative

OR in steels is KS, the authors raised some questions about

the validity of the OC model. Sinclair (2010) showed later that

the � martensite can be formed at the intersection of hexa-

gonal-close-packed (h.c.p.) " bands and noticed that the rapid

increase in growth kinetics corresponds to a change in the

orientation relationship from the Pitsch OR to the KS OR.

The phenomenological theory of martensite transformation

(PTMT) developed in the 1950s is actually the classical model

of martensitic transformation (see Supplementary Material 2).

1 Supplementary documents describing (1) some crystallographic models of
martensitic transformation, (2) the effect of the EBSD step size on the pole
figures of martensitic variants, (3) the use of a groupoid composition table to
define crystallographic packets of martensitic variants in the Kurdjumov–
Sachs orientation relationship, (4) Pitsch rotations A and B, disclinations and
dislocations, and (5) the effect of plastic deformation of austenite are available
from the IUCr electronic archives (Reference: PC5027). Services for accessing
this material are described at the back of the journal.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5027&bbid=BB61
http://crossmark.crossref.org/dialog/?doi=10.1107/S0108767313019016&domain=pdf&date_stamp=2013-08-15


It brings together the Bain distortion, the observed ORs and

the habit planes (HPs) in the same mathematical approach.

However, contrary to the crystallographic models mentioned

above, the exact atomic displacements of the iron atoms

during the transformation are beyond its scope.

In parallel with these works, we developed a method to

reconstruct the prior austenitic grains from EBSD maps

(Cayron et al., 2006; Cayron, 2006, 2007b) and it was observed

that the pole figures of the martensite grains inside the prior

austenitic grains showed continuum paths between the KS and

NW ORs. These paths were simulated with two continuous

rotations A(a) and B(b), which were considered as traces of

the transformation mechanism, and a ‘two-step’ theory of

martensitic transformation was proposed (Cayron et al., 2010).

That theory foresees the existence of an intermediate h.c.p. "
phase in all the b.c.c. martensitic steels (even if only fleeting).

This model can be considered as a KSN shear helped by

Shockley partial dislocations. However, in spite of its physical

base, the ‘two-step’ model cannot easily explain the large

variety of morphologies and HPs. Indeed, the first f.c.c.–h.c.p.

step should produce plates on the (111)� planes and the next

h.c.p.–b.c.c. step should give other plates or needles inside the

first plates, as actually observed in FeMn alloys in which the "
phase is a stable phase (Shimizu & Tanaka, 1978). Moreover,

the fact that continuous features are observed in the EBSD

pole figures of many iron alloys, whatever their composition

and the heat treatment and whatever the morphology and

HPs, leads us to consider them as the trace of a unique

mechanism, and not as two unrelated ones.

The aim of this paper is to present a ‘one-step’ model in

which rotations A(a) and B(b) are correlated. They will be

shown to be a consequence of the same unique mechanism

based on Pitsch distortion. In x2, the continuous features in the

EBSD pole figures are re-investigated. The Pitsch distortion,

which is described in x3, is shown to be in agreement with the

EBSD pole figures in x4. Some observations reported in the

literature are discussed with the ‘one-step’ model in x5. The

model is qualitative and mainly aims to explain the orientation

gradients at the mesoscale. The structure and configuration of

dislocations in the interfaces, as treated in the topological

model of Pond et al. (2008), will not be discussed.

2. Continuous features in EBSD pole figures

The EBSD pole figures of the orientations of the martensite

variants that belong to the same prior-austenitic grains exhibit

continuous features (the EBSD step size should be adjusted to

obtain more than 1000 pixels per lath, as shown in Supple-

mentary Material 2). In a previous paper (Cayron et al., 2010)

these features were simulated by using the KS variants and the

rotations A(a) around h111i� // h110i� of angle a varying

between 0 and +10�, and the rotations B(b) around h110i� //

h111i� of angle b varying between 0 and 6�. However, the KS,

NW and Pitsch variants can be linked by limiting the angles of

rotations a and b to only 5.26�. Indeed, let us consider the 24

KS variants; they can be grouped by using three special

crystallographic packets: the close-packed plane (CPP)

packet, the close-packed direction (CPD) packet and the Bain

packet. There are two low-angle misorientations between the

KS variants: the rotation A(10.5�) = 10.5�/[111]� and B(10.5�)

= 10.5�/[110]�, named 2A and 2B, respectively. The operator

2A links the low-misoriented KS variants in the CPD packets,

and the operator 2B links the low-misoriented KS variants in

the CPP packets. The rigorous algebraic definition of packets

and operators, as well as the indices of variants that are used in

this paper, are given in Supplementary Material 3.
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Figure 1
Representation in direct space of the low-misorientation operators. (a)
Operator 2A with � oriented along the [110]� // [111]� direction. The KS
�1 and �4 variants are in green and in yellow, respectively, and the Pitsch
variant in mid-orientation in red. (b) Operator 2B with � oriented along
the ½111�� // [110]� direction. The KS �4 and �12 variants are in green and
yellow, respectively, and the NW variant in mid-orientation in red.

Table 1
Different orientation relationships for martensite reported in the
literature.

References and abbreviations are Bain (1924), KS = Kurdjumov–Sachs
(Kurdjumow & Sachs, 1930), GT = Greninger–Troiano (Greninger & Troiano,
1949), NW = Nishiyama (1934)–Wassermann (1933), and Pitsch (1959).

Name Orientation relationship

Bain (001)� // (001)� and [110]� // [100]�

KS (111)� // (110)� and ½110�� // ½111��
GT (111)� // (110)� (at 1�) and ½1201705�� // ½1701707��
NW (111)� // (110)�, ½110�� // [001]�, ½112�� // ½110��
Pitsch (110)� // (111)�, [001]� // ½110��, ½110�� // ½112��



The Pitsch variants are on the CPD

packets at the mid-positions between

the pairs of KS variants linked by the

operator 2A. Each Pitsch variant is

linked to a KS variant by an operator A

represented by a rotation of angle amax

= 10.5�/2. Since the angular value of

10.5� of the operator 2A results from

the distortion of the 70.5� angle of the

h111i� directions in the (110)� plane

into the 60� angle of the h110i� direc-

tions in the (111)� // (110)� plane (Fig.

1a), the angle between the Pitsch

variants and the KS variants of the pair

is precisely

amax ¼
1
2½arccosð1=3Þ � arccosð1=2Þ�

¼ 1
2 arccosð

ffiffiffiffiffiffiffi
2=3

p
þ 1=6Þ

� 5:26�: ð1Þ

The NW variants are on the CPP

packets at the mid-positions between

the pairs of KS variants linked by the

operator 2B. Each NW variant is linked

to a KS variant of the pair by a

operator B represented by a rotation of

angle bmax = 10.5�/2. Since the angular

value of 10.5� of the operator 2B

results from the distortion of the 60�

angle of the h110i� directions in the

ð111Þ� plane into the 70.5� angle of the

h111i� directions in the (110)� // ð111Þ�
plane (Fig. 1b), the angle between the

NW variants and the KS variants of the

pair is precisely

bmax ¼
1
2½arccosð1=3Þ � arccosð1=2Þ�

¼ 1
2 arccosð

ffiffiffiffiffiffiffi
2=3

p
þ 1=6Þ

� 5:26�: ð2Þ

This analysis shows that the continuous rotations A(a) and

B(b) acting on the 24 KS variants, with a varying between 0

and 5.26� and b varying between 0 and 5.26�, are sufficient to

create the continuum of orientations and make the pole figure

a closed structure. Rotation A closes the h111i� CPDs via the

12 Pitsch variants, and rotation B closes the {110}� CPPs via

the NW variants. The pole figures have been simulated, as

done by Cayron et al. (2010), but now by limiting the

maximum value of angles a and b to 5.26�, and they continue

to be in good agreement with experimental pole figures2 (Fig.

2). The fit could even be slightly improved by combining the

rotations A and B, i.e. by introducing the continuous rotation

A(c) + B(5.26� � c) with c 2 [0, 5.26�].

This approach is quite effective for representing the crys-

tallographic intricacy of the martensite variants. All the KS,

NW and Pitsch variants are now closed on themselves by the

rotations A(a) and B(b) with an angular range limited to [0,

5.26�] for both a and b, and form a structure similar to a

nutshell. Is it possible to find a unique physical mechanism

that could explain such a fascinating intricacy and bring

information on the martensitic transformation itself? A solu-

tion is proposed in the following sections.

3. Atomic movements during Pisch distortion

The logical OR to start building a model should be the NW or

KS OR, because they are the most reported ORs in steels; but

they have already led to the models described in Supple-

mentary Material 1. Could the Pitsch OR be interesting? This

OR has been discovered after austenitization and the rapid
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Figure 2
Pole figures of martensitic variants. First column: the 24 KS, 12 NW and 12 Pitsch variants in blue,
purple and green, respectively. Second column, the 24 KS variants convoluted by the continuous
rotations A(a) and B(b) with a 2 [0, 5.26�] and b 2 [0, 5.26�], and their composition A(c) + B(5.26� �
c) with c 2 [0, 5.26�]. Third column: experimental pole figures of martensitic variants in a prior
austenitic grain of a Fe-9Cr-1Mo-0.1C (EM10) steel.

2 The part generated by A(a) with a between 5.26 and 10.5� in Cayron et al.
(2010) was actually overlapped by the part generated by A(a) with a between 0
and 5.26�, and was unnecessary.



cooling of a thin TEM lamella of an iron–nitrogen alloy

(Pitsch, 1959). Since the TEM thin foil is nearly in a stress-free

state (or at least only under biaxial stress due to the free

surface), it should be close to the OR that would be naturally

obtained without the constraint imposed by the austenitic

matrix in bulk materials. Moreover, as mentioned in the

introduction, the Pitsch OR was reported by Sinclair (2010)

and Sinclair & Hoagland (2008) from molecular-dynamics

simulations.

In his paper, Pitsch transposed the OR into a tensor

composed of a pure distortion and a half twin shear, without

according a fundamental role to it. Let us detail here the

Pitsch distortion on the atomic scale. It is assumed that during

the �! � martensitic transformation the iron atoms are hard

spheres of same diameter in both phases, which, by consid-

ering the h110i� and h111i� dense directions, implies that

ffiffiffi
2
p

a� ¼
ffiffiffi
3
p

a�: ð3Þ

The lattice parameter of pure iron extrapolated at room

temperature is a� = 0.3573 nm, which should give a� =

0.2917 nm, whereas it is actually a� = 0.2866 nm. The differ-

ence of 2% can be attributed to the electronic and magnetic

properties of iron. However, for the sake of simplicity, that

difference will not be taken into consideration in the rest of

this article.

The Pitsch OR is [110]� // [111]�, ½110�� // ½112�� and [001]� //

½110��. These axes form an orthogonal (but not orthonormal)

reference basis B1 = (x, y, z). With the hard-sphere assump-

tion, the parallelism condition is actually the equality [110]� =

[111]�, which means that x is a neutral (invariant) line. The

initial � lattice is shown in Fig. 3(a) in such a way that the

ð110Þ� plane is horizontal and the (110)� plane vertical. The

distortion is represented in Fig. 3(b), the resulting � crystal –

actually a tetragonal frame of it – is shown in Fig. 3(c), and its

basic lattice is shown in Fig. 3(d). In order to make the figure

easier to understand, the atoms do not have their real size, and

those in the middle of faces or volumes are a little smaller than

those at the corners. However, we point out that the atoms of

the � phase along the x and y axis in Fig. 3(a) stay in contact

during the transformation along the neutral line x, and also

along the y/y0 directions (y for the � phase and y0 for the �
phase), as represented in Fig. 4. The details in different

projection views are given as follows. First, we consider the

distortion of the (001)� plane into the ð110Þ� plane, viewed

along the z axis (Fig. 5a). The angle of 90� between the [110]�
and ½110�� diagonals of the (001)� square is distorted into

the angle of 70.5� between the [111]� and ½111�� diagonals of

the ð110Þ� rectangle. The [110]� = [111]� direction remains

unchanged (no dilatation and no rotation). Therefore, the

distortion is completely obtained with the rotation of

y ¼ ½110�� by � = arcsin (1/3) ’ 19.5� around the common

[001]� // ½110�� axis, which becomes y0 ¼ ½111��, as represented

by a vector � of coordinates �x = sin(�) = 1/3, �y = cos(�) � 1 =ffiffiffi
8
p
=3� 1, �z = 0 in Fig. 3(b). To a rough approximation, if one

assume that �y � �x, the distortion � appears as a shear of

value �x = 1/3 in the [111]� direction on the ð112Þ� plane. Pitsch

probably made such an approximation when mentioning a half

shear of the � phase; however, all the components of � are

kept in the rest of the present article. We consider now the

distortion of the (110)� plane into the (111)� plane, viewed

perpendicularly along the x axis (Fig. 5d). The angle of 70.5�

between the ½111�� and ½111�� diagonals of the (110)� rectangle

is distorted into the angle of 60� between the ½011�� and ½101��
diagonals of the (111)� triangle. The [001]� direction is unro-

tated but transformed into the ½110�� direction by a dilatation
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Figure 3
F.c.c.–b.c.c. transformation by Pitsch distortion in a three-dimensional
representation. (a) F.c.c. lattice with the ð110Þ� plane horizontal and the
(110)� plane vertical; (b) Pitsch distortion with x = [110]� = [111]� the
neutral line along the horizontal direction, also marked by ‘0’; (c) b.c.c.
crystal in a tetragonal frame after distortion; (d) the same crystal in its
basic cubic reference lattice (deformed by the perspective). The Fe atoms
are represented by small circles. The f.c.c. phase is in blue and the b.c.c.
phase in red or orange (the same colours are used in the rest of this
article).

Figure 4
F.c.c.–b.c.c. transformation by Pitsch distortion with hard-sphere
representation of the Fe atoms. The f.c.c. lattice and the distorted
tetragonal lattice are in black, the b.c.c. lattice is in yellow. The neutral
line is given by the horizontal arrow.



of ratio " = 2=
ffiffiffi
3
p

calculated from equation (3). Therefore, the

Pitsch distortion matrix in the B1 = (x, y, z) basis is

D=B1
¼

1 �x 0

0 1þ �y 0

0 0 "

2
4

3
5 ¼

1 1=3 0

0
ffiffiffi
8
p
=3 0

0 0 2=
ffiffiffi
3
p

2
4

3
5: ð4Þ

In the reference coordinate basis B0 (of vectors [100]�, [010]�,

[001]�), the basis B1 is given by the transformation matrix

B0 ! B1

� �
¼

1=2 �1=2 0

1=2 1=2 0

0 0 1

2
4

3
5;

for which the inverse is

B1 ! B0

� �
¼

1 1 0

�1 1 0

0 0 1

2
4

3
5:

Therefore, the Pitsch distortion matrix in the reference coor-

dinate basis B0 is:

D=B0
¼ B0 ! B1

� �
D=B1

B1 ! B0

� �
¼

1� �b �b 0

��a 1þ �a 0

0 0 "

2
4

3
5;

ð5Þ

where �a = (�x + �y)/2 and �b = (�x � �y)/2. D/B0
is given

numerically by

D=B0
¼

ð2þ
ffiffiffi
8
p
Þ=6 ð4�

ffiffiffi
8
p
Þ=6 0

ð2�
ffiffiffi
8
p
Þ=6 ð4þ

ffiffiffi
8
p
Þ=6 0

0 0 2=
ffiffiffi
3
p

2
4

3
5: ð6Þ

The determinant of the matrix D (whatever the basis) is

detðDÞ = 2ð3=2Þ�3=2, as expected for a transformation between

the b.c.c. and f.c.c. phases related by a hard-sphere model,

because the theoretical ratio of the atomic volumes in the

lattices is indeed r ¼ ða3
�=2Þ=ða3

�=4Þ ¼ 2ð3=2Þ�3=2, according to

equation (3).

The eigenvalues of D are the real numbers d1 = 1,

d2 ¼
ffiffiffi
8
p
=3 ’ 0:943 and d3 ¼ " ¼ 2=

ffiffiffi
3
p
’ 1:155, associated

with the normalized eigenvectors ½1=
ffiffiffi
2
p
; 1=

ffiffiffi
2
p
; 0��,

½
ffiffiffiffiffiffiffi
2=3
p

;
ffiffiffiffiffiffiffi
1=3
p

; 0�� , and [001]�, respectively. This means that the

matrix D can be diagonalized by writing it in the (not ortho-

gonal) basis Bd formed by these vectors:

D=Bd
¼

1=
ffiffiffi
2
p ffiffiffiffiffiffiffi

2=3
p

0

1=
ffiffiffi
2
p ffiffiffiffiffiffiffi

1=3
p

0

0 0 1

2
64

3
75
�1

D=B0

1=
ffiffiffi
2
p ffiffiffiffiffiffiffi

2=3
p

0

1=
ffiffiffi
2
p ffiffiffiffiffiffiffi

1=3
p

0

0 0 1

2
64

3
75

¼

1 0 0

0
ffiffiffi
8
p
=3 0

0 0 2=
ffiffiffi
3
p

2
64

3
75: ð7Þ

The differences between the diagonal values and unity give

the principal strain values of 0, �5.7 and +15.5%. They are

lower than the �20, +12 and +12% values obtained with the

Bain distortion, and even lower than with the two-step

mechanism. The average of the absolute values of the prin-

cipal strains is only 7.1% with the Pitsch distortion, whereas it

is 10.6% with the two-step model and 14.6% with the Bain

distortion. Moreover, it is worth noting that, like the Bain

distortion, no shuffle (movements of atoms inside the lattice)

is required in the Pitsch distortion.

4. Links between crystallographic intricacy and Pitsch
distortion

From this analysis, Pitsch distortion seems to be a good

candidate for explaining the f.c.c.–b.c.c. transformation. Could

it be the starting point of the continuous paths observed in the

pole figures, and could it explain them without other ad hoc

parameters or mechanisms? Even if it is difficult to prove,

some favourable arguments are now presented.

4.1. Pitsch distortion and the closing rotation A

Let us consider the Pitsch distortion in projection along the

neutral line x = [110]� = [111]� (Fig. 5d), and let us represent

the (110)� plane by an isosceles triangle and the (111)� plane

by an equilateral triangle. The angle of 70.5� of the (110)�
triangle is distorted into the angle of 60� of the (111)� triangle.

It can be supposed that such a distortion is principally

accommodated by the � matrix in which the � nucleus forms,

as illustrated in Fig. 6. This implies that, on each face of the

triangles, the f.c.c. matrix lattice is progressively rotated from

0� far from the �/� interface to 5.26� at the two �/� interfaces.

This rotation is exactly the closing rotation A. Partial discli-

nations can be used to describe this rotation on the meso-

scopic scale. The 60 to 70.5� distortion associated with the

neutral line x can be appropriately symbolized by a wedge
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Figure 5
F.c.c.–b.c.c. transformation by Pitsch distortion viewed in projection along
three axes: (a) and (b) z axis, (c) y axis, and (d) x axis.



disclination of Frank axial vector w2A = (�10.5�, [110]�), and

can be decomposed into two equal closing wedge disclinations

wA = (�5.26�, [110]�) on each face of the � nucleus. At the

microscopic scale, the wedge disclinations could result from

pile-ups on the ð110Þ� plane of edge sessile dislocations of line

[110]� and Burgers vectors b = ½110�� lying on the (001)� plane,

as detailed in Supplementary Material 4.

After the stage of � nucleation by Pitsch distortion, the

transformation continues and martensite grows by the same

Pitsch mechanism. However, the surrounding � matrix is now

deformed and rotated in such a way that, even if the Pitsch OR

is respected locally, the � martensite crystals are progressively

rotated and reoriented globally with respect to the far auste-

nite matrix. The rotations are those created in the � matrix by

the transformation itself during the nucleation (they are the

closing rotations A on both faces of the � nucleus). At the end

of the process, as shown in Fig. 6(b), even if Pitsch distortion is

the only mechanism for both nucleation and growth, the initial

nucleus variant in the Pitsch OR is reoriented during growth

into two variants derived from the Pitsch nucleus by the

rotation A of �5.26�, i.e. into two variants in the KS OR with

respect to the bulk austenite, as observed experimentally and

described in x2. Of course, it prompts the question why the

formation of martensite by Pitsch distortion during growth

does not create another deformation field of the �
surrounding matrix to lead to an endless process and infinite

rotations. Even if this question is not yet answered, we believe

that the KS and NW ORs constitute locking configurations

due to the parallelism of the close-packed planes.

4.2. Pitsch distortion and the closing rotation B

Is it possible to explain the closing rotation B with similar

arguments? At first sight the answer is no, because none of

{111}� planes is parallel to a {110}� plane with the Pitsch OR.

Only the low-index (001)� plane is transformed into the ð110Þ�
plane (Fig. 7a). However, Bogers & Burgers (1964) showed

that a ð111Þ� plane can be transformed into a (110)� plane by a

simple shear on a (111)� plane. So, could something similar

occur with the Pitsch distortion? Since we found it difficult to

geometrically figure out the effect of the distortion on the

{111}� planes, the matrix D/B0 of equation (6) has been used

for calculations. For the four {111}� planes forming a tetra-

hedron noted PVSQ, the image of their normal and the images

of the three h110i� edges of the triangles have been calculated.

For three {111}� planes, nothing special happens, but for the

ð111Þ� plane the result is interesting: obviously the neutral

edge x = [110]� (SV) is unchanged, but the [101]� and ½011��
edges become 	[0.80, �0.14, 1.15]� and 	[0.19, 1.14, �1.15]

making angles of 70.5 and �54.7� with x, respectively. The

image by distortion of the ð111Þ� normal (in reciprocal space)

is calculated by using the inverse of the transpose of matrix

D/B0
and becomes (�1.06, �1.06, 0.86)�, which makes an angle

of 5.26� with ð111Þ� by a rotation around the [110]� axis, i.e. by

the rotation A. This proves that the effect of the Pitsch

distortion on the ð111Þ� plane is: (a) a rotation A, which gives

the intermediate KS parallelism condition, and (b) a distortion

that transforms that plane into a (110)� plane, as shown in Fig.

7(b) and (c), which is exactly the expected result. For the

distortion of the ð111Þ� plane, the same scenario as described

before for the (110)� plane can be imagined. The closing

rotation is now the rotation B and the associated wedge

disclinations are wB = (�5.26�, ½111��).
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Figure 7
Effect of the Pitsch distortion on different planes: (a) on the (001)� plane viewed in two dimensions, (b) on the four {111}� planes forming the VPQS
tetrahedron viewed in three dimensions, and (c) on the ð111Þ� plane. The � planes are in blue and the � planes in red. Since SV is along the neutral line x
(represented here vertically), only the corners P and Q are displaced by the Pitsch distortion and noted P0Q0.

Figure 6
Explanation of the continuous rotation A (from Pitsch to KS). (a)
Nucleation of an �P variant (in red) by the Pitsch distortion and
deformation of the � surrounding matrix (in blue) induced by the �! �
transformation and accommodated by dislocation pile-up which creates
the progressive rotation of 10.5�/2 on each side of the �P nucleus. (b)
Growth of the �P variant in the deformed � matrix (with local Pitsch OR
in the matrix). In the reference frame of austenite far from the
transformation, the nucleus in Pitsch OR is progressively reoriented to
two KS variants �KS linked by the 2A operator.



This global analysis shows that Pitsch distortion is a very

good candidate for understanding: (a) the martensitic trans-

formation itself and (b) the closed and continuous crystal-

lographic structure formed by the NW–KS–Pitsch variants.

The fascinating continuity and intricacy between the close-

packed directions and planes described in x2 seem to be the

natural result of only one mechanism. The � martensite

nucleus is created by Pitsch distortion in the Pitsch OR inside

austenite. The formation of this nucleus generates incompat-

ibilities with the surrounding � austenitic matrix, which are the

rotational misfits 2A and 2B (accommodated by disclinations

in the � matrix). In other words, the � matrix has been

continuously rotated on each side of the �P nucleus by the two

rotations A(a) and B(b) with angles a and b varying from 0�

far from the nucleus to �5.26� close to the �/� interface.

During the martensite growth, the � ! � transformation

obeys the same Pitsch distortion, but now inside a continu-

ously rotated � matrix. The growth leads to new � variants

misoriented from the nucleus by the 5.26� rotations A and B,

i.e. in the KS and NW ORs with respect to the bulk austenite.

These two ORs seem to act as locking configurations. In this

model, the Pitsch OR appears as a precursor of the KS and

NW ORs.

4.3. Schematic representation of the continuum of variant
orientations

The CPP–CPD diagram introduced by Miyamoto et al.

(2009) can be completed to represent the deviation between

an OR determined experimentally and the reference KS OR,

with the help of two angles: �CPP, the angular deviation

between the CPPs (111)� and (110)�, and �CPD, the angular

deviation between the CPDs [110]� and [111]�. The Pitsch OR

and the transformation path with its arrow can now be added:

the martensitic variants start from a Pitsch OR and are

continuously reoriented toward KS (by the rotation A) and

then toward NW (by the rotation B), as shown in Fig. 8. The

path A followed by B, denoted (A + B), supposes that the

formation mechanisms are dissociated, which is not the case,

because both A and B result from the same mechanism. The

structure of variants with their packets (described in Supple-

mentary Material 3) can now be represented by using Pitsch

variants as starting nuclei (grouped by twinned pairs), KS as

intermediate variants, and NW as ending variants, as shown in

Fig. 9. A more realistic path is a combination A 
 B = A(c) +

B(5.26� � c) with c 2 [0, 5.26�], which gives the straight

diagonal line from the Pitsch OR to the NW OR, or poly-

nomial compositions, which give curves. The exact shape

should depend on the mechanical properties of the austenite.

The simulations presented in Fig. 2 were obtained with the A +

B and A 
 B paths.3 It can be noticed that the average

Miyamoto OR (Miyamoto et al., 2009) is close to the bary-

centre of the P–KS–NW triangle.

5. Revisiting the literature

5.1. Carbon content and tetragonality

The interstitial octahedral sites of austenite, i.e. the 12

centres of the h100i� edges and the centre of the lattice, which

are partially occupied by carbon atoms, are transformed by

Pitsch distortion into octahedral sites of the b.c.c. martensite,

i.e. the 12 centres of the h100i� edges and the 6 centres of the
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Figure 9
Schematic representation of the continuous paths between the twinned
Pitsch nuclei (noted P1/P2, P3/P4 etc.), the intermediate KS variants
obtained by rotation A, and the final NW variants obtained by rotation
B. In fact, A and B result from the same Pitsch distortion and act
simultaneously.

Figure 8
CPP–CPD diagram of martensitic transformation. �CPP (along the x axis)
is the angular deviation between the CPPs (111)� and (110)�, and �CPD

(along the y axis) is the angular deviation between the CPDs [110]� and
[111]�. The Kelly, GTand Miyamoto ORs are also indicated. The one-step
model explains the continuous path from the Pitsch OR to the KS and
NW ORs by the rotations A and B.

3 The simulations of Fig. 2 show the continuities KS! Pitsch (rotation A) and
KS! NW (rotation B), but the mechanism is actually Pitsch! KS! NW.
Indeed, it was easier to use the intermediate KS as reference to draw the
continuities.



{100}� faces. Therefore, the Pitsch distortion could explain, as

well as the Bain distortion, the fact that carbon atoms occupy

the octahedral sites in the � Fe structure, despite the fact that

there is less space there than in tetrahedral sites. Moreover, as

in the Bain distortion, the occupation of octahedral sites may

explain the tetragonal distortion of the martensite (b.c.c. !

b.c.t.) along one of the h100i� axes, which becomes the c axis of

the b.c.t. structure at high carbon content. Indeed, with both

Bain and Pitsch distortions, two h100i� axes come from the

perpendicular ½011�� and ½011�� of the (100)� plane, and the

third h100i� axis come from the [100]� axis, which is therefore

the natural candidate to be the c axis, as presented in Fig. 3(d).

5.2. Orientation of habit planes

The HPs were first determined in the 1930s from optical

microscopy on martensite plates formed in monocrystalline

austenite of known orientation (measured by X-ray diffrac-

tion), and they were, naturally, given in the reference frame of

austenite. Later, in the 1950s, the HPs were determined more

accurately by TEM in the austenite or martensite reference

frame, but, following tradition, researchers continued

reporting them in the austenite reference frame. The HPs were

found to have exotic indexes such as (225)�, ð305010Þ� etc. From

a crystallographic point of view, trying to understand or

predict HPs without understanding the mechanisms at atomic

scale, as done in the PTMT, is very tricky. May the Pitsch

distortion be used to understand the orientations of the HPs?

For martensite in low carbon steels with needle shapes along

h111i� (Kelly & Nutting, 1960), thus without an HP, the

explanation is simple: they are elongated along the neutral line

[111]� = [110]�, which is the lowest strained direction of the

transformation. To treat the other cases, the exotic HPs have

been drawn in a stereographic pole figure in order to find a

correspondence with the low-index planes of martensite.

Different solutions have been tested and it has been found

that the {112}� planes with the Pitsch OR give very satisfactory

results for the {225}� HPs and also a quite good agreement for

the {259}� and f3010015g� HPs, as shown in Fig. 10(a). The

{135}� HPs could also appear as {112}� planes of martensite,

but with KS OR, as shown in Fig. 10(b). Only the {557}�
HPs are not completely explained. Since the angle between

the (557)� and (111)� planes is 9.4�, a link can be imagined

between these planes by the rotation 2A.

The {225}� // {112}� HPs are in perfect agreement with the

Pistch distortion because these planes contain the neutral line.

In addition, it can be specified which {225}� and {112}� HPs in

their symmetry-equivalent families are correct with respect to

the [110]� // [111]� neutral line: they are the ð225Þ� and ð225Þ� ,

and the ð112Þ�, ð121Þ� and ð211Þ� planes.

5.3. Midribs, twins and growth

Some alloys sometimes have lenticular martensite laths

containing a planar zone, often in their middle, called a midrib.

The formation of midribs has never been fully explained

despite much research [a historical review can be found in

Nishiyama (1978), pp. 43–47]. It is now agreed that the midrib

is the plane of the transformation initiation, and the �/�
interface propagates laterally on either side in opposite

directions. Sometimes the midrib is very sharp and can be

considered as a thin plate (Shibata et al., 2005, 2008). A

gradual rotation inside the � crystal between the midrib and

the external �/� interfaces has been noticed (Shibata et al.,

2005; Jafarian et al., 2011), but this observation remains

unexplained. The midribs also often contain a high density of

‘twins’ that were promptly considered as mechanical twins

associated with the ‘inhomogeneous lattice-invariant’ defor-

mation required by the PTMT (Bhadeshia, 1987; Kelly &

Nutting, 1960). Although this view is shared by many metal-

lurgists, some features do not fit with it.

Let us consider for example the TEM image of Fig. 11(a).

The ‘twins’ stop inside the martensite lath and do not cross it

entirely. Moreover, an important detail is sometimes noticed:

the boundaries of the ‘twins’ are generally not straight but

slightly curved (Jana & Wayman, 1970; Shimizu & Nishiyama,

1972; Sandvik & Wayman, 1983), which is unusual for

mechanical twins. All these features can be explained if we

consider that the midrib corresponds to the nucleus Pitsch

variant (�P1) and that the ‘twins’ do not result from a

mechanical shear but from the transformation itself. Indeed,

in each lenticular martensite, only one ‘twin’ orientation is

observed among the four possible �3 variants corresponding

to the four rotations of 60� around the h111i� directions, and

we believe that this ‘twin’ is actually the other Pitsch variant

(�P2) sharing the same neutral line with the nucleus �P1. The

�P1–�P2 pair of Pitsch variants results from the Pitsch distor-

tion: the � part of the tensor in equation (4) can be obtained in

two directions deduced by inversion and, because � is a shear

in a first rough approximation, by the ð112Þ� mirror symmetry

(Fig. 5a). The two Pitsch variants �P1 and �P2 share the same x

= [111]� direction and are linked by a rotation of 60� around it.

During nucleation of �P1, the intricate nucleation of �P2 inside

�P1 is energetically possible because both crystals share a

common lattice (the �3 coincidence site lattice). As illustrated

in Fig. 11(b), after nucleation the �P1 variant grows in a ð211Þ�
HP, forming the midrib, and �P2 grows in the ð121Þ� HP, which

is also the mirror plane of �3 misorientation. The two ð211Þ�
and ð121Þ� HPs have an angle of 60�. The rotation A, gener-
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Figure 10
Stereographic projection of the habit planes of martensite reported in the
literature (large circles), with (a) the {112}� planes of the 12 Pitsch
variants and (b) the {112}� planes of the 24 KS variants (small blue discs).
There is a good correspondence, except for the (557)� planes.



ated by the deformation field of the Pitsch distortion (x4.1),

acts differently on the �P1 and �P2 variants because of the

difference of orientations and HPs. The �P1 midrib continues

to grow laterally and its lattice is gradually rotated so that

its orientation gets close to KS: �P1 has been transformed

progressively into the �KS3 variant according to the scheme of

Fig. 9. The martensite lath acquires a lenticular shape, often

asymmetric due to the rotation A. The �P2 ‘twins’ continue to

grow; the rotation A transforms them progressively into an

�KS1 variant, and also curves the ð121Þ� boundary. This 5.26�

curvature, marked by the broken line A in Fig. 11(a), creates

additional strains with the surrounding �P1 crystal, which stops

the growth process, as represented in Fig. 11(b). The �P1, �P2,

�KS3 and �KS1 variants belong to the same CPD packet.

5.4. Butterfly martensite

Among the wide variety of shapes and morphologies,

butterfly martensite is probably the most intriguing. It is

formed by two lenticular-shaped wings in two distinct {225}�
planes and, as a lenticular martensite, it can present the same

internal features, such as a midrib, ‘twins’, (110)� planar faults

and serrations (Umemoto et al., 1984; Gong, 1987; Zhang et al.,

1993).

Sato & Zaefferer (2009) and Sato et al. (2009) showed

recently by EBSD that the � lattice inside a wing is gradually

deformed by a rotation around the common [111]� = [110]�
axis with a maximum angle generally between 5 and 10�, i.e. by

the rotation A. There is another interesting point that can be

noticed in the EBSD map reported in Fig. 12(a): the two wings

have the same orientation and the same internal gradient of

orientations despite their different HPs. This may be

explained by the butterfly having been nucleated first at the

point noted ‘0’, which is the intersection of two glide planes

forming one Pitsch variant. The (002)� // ð110Þ� mirror

symmetry of the austenite-Pitsch variant system makes the

growth on the two ð225Þ� // ð211Þ� and ð225Þ� // ð121Þ� HPs

equivalent and explains the presence of two wings for a unique

Pitsch nucleus. Moreover, in the butterfly martensite of Fig.

12(a) there is no midrib, which means that the growth occurs

only towards the inner direction and both wings are continu-

ously rotated by the same rotation A whatever the HP is. The

growth stops when the ð011Þ� planes become parallel to ð111Þ�.

The case studied here corresponds to a monocrystalline

butterfly martensite in which the two ð225Þ� and ð225Þ� HPs

intersect at the neutral line [111]� = [110]�. The angle of the

two wings is 58.99�. As reported in the literature, it seems that

there are many other configurations for the pairs of {225}� HPs

with angles ranging from 41 to 139� (Gong, 1987). We believe

that systematic precise EBSD studies on the pairs of wings

could help to better understand these cases.

5.5. Effect of a prior plastic deformation of austenite

It has been acknowledged for a long time that the plastic

deformation of austenite before quenching increases the

martensite start (MS) temperature, which means that a prior

plastic deformation favours the martensite formation. This

strain-induced nucleation of martensite has been clearly

shown to involve shear systems of austenite such as stacking

faults or " plates (Olson & Cohen, 1972). We think that this

fact can be explained with the one-step theory. The intersec-

tion line of the two shear or glide bands is indeed the place of

very high strain concentrations that help to distort the angle of

70.5� of the (110)� plane into the angle of 60� of the (111)�
plane, as described in x4.1. The shear intersections could act as

Lomer–Cottrell locks and sources of wedge disclinations that

would reduce the energy barrier between the � and � phases,
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Figure 11
Midrib and ‘twins’ inside a lenticular martensite lath. (a) TEM image from Shimizu & Nishiyama (1972), reproduced with kind permission from Springer
Science+Business Media B.V. The habit planes of the ‘twins’ make an angle of 60� with the midrib and they are curved at the mark ‘A’, also visible at the
arrow tip. The surrounding austenite is not visible. (b) Schematic representation with the lattices. The ‘twins’ can be considered as Pitsch variants �2 in
twin orientation relationship with the main Pitsch variant �1 forming the midrib. The HPs of both variants are {112}� planes and the curvature agrees with
the rotation A, which results from the deformation of the surrounding matrix during the formation of the nucleus �1.



and therefore trigger the martensite nucleation. This case is

illustrated by using the TEM images of Shimizu & Nishiyama

(1972), as detailed in Supplementary Material 5a.

The one-step theory predicts that the intersection line is the

h110i� neutral line of the Pitsch distortion, and the variants are

grouped by packets as follows: two variants with Pitsch OR (in

quenched thin TEM samples, for example), four variants with

KS OR, and four variants with NW OR. Examples of packets

are P1 + P2, KS1 + KS3 + KS4 + KS9 and NW1 + NW2 + NW4

+ NW5, illustrated in Fig. 9. Bokros & Parker (1963) showed

that plastic strains prior to martensite transformation promote

the formation of clusters of four variants about common

h110i� directions. Similarly, Gong et al. (2013) recently

reported that bainitic transformation is accelerated by

ausforming, which is associated again with a strong variant

selection. They showed by EBSD that the bainitic laths are

in NW OR and are grouped by packets of four variants.

The authors explained this with Bain strains and Shockley

partial dislocations. Actually, these packets are exactly those

predicted by the one-step theory, as detailed in Supplementary

Material 5b.

5.6. Internal and edge defects

The many (110)� // (111)� planar defects observed in

lenticular martensite by Jana & Wayman (1970), Shimizu &

Nishiyama (1972), Sandvik & Wayman (1983) and in butterfly

martensite by Umemoto et al. (1984), Gong (1987) and Zhang

et al. (1993) might be explained as follows: the deformation of

austenite in the surrounding of a nucleated martensite is

accommodated by the disclinations A constituted by disloca-

tions on a specific (111)� plane (x4.1 and Supplementary

Material 5). When the austenite is in turn transformed into

martensite with local Pitsch OR, the (111)� planar defects are

probably transformed into (110)� defects by ‘inheritance’.

Similarly, the many sets of parallel screw dislocations with

Burgers vector 1
2[111]� // 1

2[110]� observed by Sandvik &

Wayman (1983) could result from the accommodating discli-

nations wB (x4.2) and an inheritance mechanism during the

martensitic transformation.

The origin of serrations, which are small notches sometimes

visible on the edge of martensite (Jana & Wayman, 1970; Maki

et al., 1973) is still not well understood. Jana & Wayman (1970)

consider that ‘The serrations can correspond to the termina-

tion of growth in local sections of the plates due to constraints

in the matrix, or to the nucleation of side plates of other habit

plane variants’, but this seems contradictory. It can easily be

understood that the (111)� planar defects act as barriers and

block the martensite growth, but the fact that they could help

the nucleation is more difficult to explain. In the one-step

theory, since the intersection of two glide planes can trigger

the martensite Pitsch distortion, the striations can be

conceived of as regeneration sources of the martensite growth

and the dislocations on the (111)� planar defects could feed

the disclinations necessary to the martensite transformation.

These defects could stop the growth of the martensite plates

for a short instant and, once the intersection points are filled

enough with dislocations to create the disclination, the

martensite would grow again in its main HP, or in another

(225)� HP, as in butterfly martensite.

6. Conclusions

A theory of �! �martensitic transformation based on Pitsch

distortion is proposed to explain the crystallographic intricacy

and the continuous orientations of martensite variants visible

in the EBSD pole figures.

The Pitsch distortion respects the hard-sphere packing of

the iron atoms. It consists of a distortion of the (110)� plane

into the (111)� plane (explaining the rotation A), followed by

a distortion of the ð111Þ� plane into the (110)� plane

(explaining the rotation B). There is a neutral line along the

close-packed direction [110]� = [111]� and no shuffle is

required. The Pistch distortion can be expressed by a simple
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Figure 12
Butterfly martensite. (a) EBSD map showing the misorientations inside the martensite and in the austenite matrix [reprinted from Sato & Zaefferer
(2009) with permission from Elsevier]. The red/blue colours are inverted with respect to our paper. (b) Schematic presentation with the lattices of the
phases. Nucleation of a martensite variant in Pitsch OR at point noted ‘0’, and growth, first along the {112}� planes and later by the thickening of the
wings with the gradual rotation A, are shown. The angle between the planes ð225Þ� and ð225Þ� is 58.99� and the angle between ð112Þ� and ð211Þ� is 60�.



diagonal matrix (in a non-orthogonal reference frame) with

principal strains of 0, �5.7 and 15.5%, therefore well below

the +12, +12, �20% values of the Bain distortion. During

nucleation, the surrounding austenite matrix is deformed to

accommodate the Pitsch distortion. During growth, the

martensite continues to form by the Pitsch distortion inside

the deformed matrix, and thus it is gradually misoriented by

the rotations of angles ranging from 0 to 5.26� around the

[110]� and ½111�� directions, on each side of the nucleus, to

finally end with KS and NW ORs with respect to the matrix,

far from the nucleus. The continuous rotations inside the

martensite variants, and the KS and NW ORs, all result from

the Pitsch distortion and the gradual reorientation of the

variants during their growth in the deformation field of the

surrounding austenitic matrix created by the transformation

itself.

This model can be used to reinterprete some micro-

structural features reported in the literature. Most of the time,

the elongated direction of the martensite, whatever its shape

(needles, lath or lenticular plates), contains the [110]� neutral

line. The {225}� habit planes correspond to low-index {112}�
facets of the Pitsch martensite nucleus. The ‘twins’ sometimes

observed at the midrib are Pitsch variants created by the phase

transformation itself. The effect of prior plastic deformation of

austenite can be explained by the creation of an intersection

h110i� line between two {111}� glide planes with a distortion

field that triggers the Pitsch distortion during cooling and thus

the martensitic transformation. This process could explain the

variant selection which results from ausforming, and the

serration sometimes observed at the edge of the lenticular

martensite.

We consider that the main ideas of the theory also apply to

bainitic transformations, since the one-step model is based on

the continuous features observed in the EBSD pole figures,

and the features in martensite and bainite are similar.

7. Related literature

Some crystallographic models of martensitic transformation

are discussed in Bain (1924), Shimizu & Tanaka (1978),

Kurdjumow & Sachs (1930), Nishiyama (1934, 1978),

Greninger & Troiano (1949), Kelly & Groves (1973), Bogers

& Burgers (1964), Olson & Cohen (1972, 1976), Wechsler et al.

(1953), Bowles & Mackenzie (1954), Bhadeshia (1987),

Christian (2002), Acton & Bevis (1969) and Zhang & Kelly

(2009). For the effect of the EBSD step size on the pole figures

of martensitic variants, see Cayron (2007a) and Nolze (2004).

On the use of a groupoid composition table to define crys-

tallographic packets of martensitic variants in the KS OR, see

Gourgues et al. (2000), Lambert-Perlade et al. (2004), Morito

et al. (2003, 2006), Cayron (2006, 2007b) and Cayron et al.

(2006). Pitsch rotations A and B, disinclinations and disloca-

tions are discussed in Volterra (1907), Romanov (2003),

Kleman & Friedel (2008), Klimanek et al. (2001), Murayama et

al. (2002), Lomer (1951), Cottrell (1952), Kajiwara et al.

(1996), Ogawa & Kajiwara (2007), Shibata et al. (2010) and

Pond et al. (2008). On the effect of plastic deformation of

austenite see Olson & Cohen (1972), Shimizu & Nishiyama

(1972), Nishiyama (1978), Sandvik & Wayman (1983), Gong et

al. (2013) and Cayron (2007a). Figs. S1_2, S1_3, S1_4 and S5_2

are reprinted with permission from Elsevier, and Fig. S5_1 is

reproduced with kind permission from Springer Science+

Business Media B.V.
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